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VISION OF THE INSTITUTION 

To mould true citizens who are millennium leaders and catalysts of change through excellence in 

education. 

MISSION OF THE INSTITUTION  

NCERC is committed to transform itself into a center of excellence in Learning and Research in 

Engineering and Frontier Technology and to impart quality education to mould technically competent 

citizens with moral integrity, social commitment and ethical values. 

  

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe 

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research 

scientists and intellectual leaders of the country who can spread the beams of light and happiness among 

the poor and the underprivileged. 
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ABOUT DEPARTMENT 

 Established in: 2002 

 Course offered  :  B.Tech in Computer Science and Engineering 

M.Tech in Computer Science and Engineering 

M.Tech in Cyber Security 

 Approved by AICTE New Delhi and Accredited by NAAC 

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University. 

 

DEPARTMENT VISION 

Producing  Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals 

to facilitate continuous technological advancement. 

 

DEPARTMENT MISSION 

1. To Impart Quality Education by creative Teaching Learning Process  

2. To Promote cutting-edge Research and Development Process to solve real world problems with 

emerging technologies.  

3. To Inculcate Entrepreneurship Skills among Students.  

4. To cultivate Moral and Ethical Values in their Profession.  

 

PROGRAMME EDUCATIONAL OBJECTIVES 

PEO 1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering 

through lifelong learning. 

PEO 2: Graduates will be able to Analyze, design and development of novel Software Packages, 
Web Services, System Tools and Components as per needs and specifications. 

PEO 3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment 

by learning and applying new technologies. 

PEO 4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, Team 

work and leadership qualities. 

 

 

Free Hand
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PROGRAM OUTCOMES (POS) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant 

to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or leader 

in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give and 

receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

PROGRAM SPECIFIC OUTCOMES (PSO) 

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope. 
 

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality 

System Software Tools and Efficient Web Design Models with a focus on performance 
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optimization. 
 

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software 

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create 

innovative career path and for the socially relevant issues. 

 

COURSE OUTCOMES 
 

C302.1 To Analyze a given algorithm and express its time and space complexities 

and also analyze different recurrence methods. 

C302.2 Tousethe Master’s Theorem to find the complexity and to design different 

types of trees. 

C302.3 To Apply traversals, shortest path finding algorithms into graphs. 

C302.4 To Analyze different algorithm methods like dynamic programming and 

divide and conquer strategies. 

C302.5 To Implement Optimization problems using Greedy strategy. 

 C302.6 To Design efficient algorithms using Back Tracking and Branch Bound 

Techniques for solving problemsand to apply computational problems into 

P, NP, NP-Hard and NP-Complete. 

 

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES 

 

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

C302.1 3 3 3 2 2 - - - - - - - 

C302.2 3 3 3 2 - - - - - - - - 

C302.3 3 3 3 2 2 - - - - - - - 

C302.4 3 3 3 2 2 - - - - - - - 

C302.5 3 3 3 2 2 - - - - - - - 

C302.6 3 3 3 2 - - - - - - - - 

C302 3 3 3 2 2        

 

CO’S PSO1 PSO2 PSO3 

C302.1 3 3 - 

C302.2 3 3 - 

C302.3 3 3 - 

C302.4 3 3 - 

 C302.5 3 3 - 

C302.6 3 3 - 

C302 3 3  

 

 

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1 
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SYLLABUS 
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QUESTION BANK 

 

MODULE I 

 

Q:NO: 

 

QUESTIONS 

 

CO 

 

KL 

 

PAGE 

NO: 

1 What are the different types of algorithm design techniques? 

Explain in detail. 

CO1 K2 13 

2 Discuss in detail about Space Complexity with example. CO1 K2 17 

3 Discuss in detail about time complexity with example. CO1 K2 21 

4 Describe Best, Worst and Average case complexities in detail. CO1 K3 25 

5 Find the best case of Linear Search Algorithm. CO1 K2 26 

6 Discuss any 2 method to solve recurrence equation in detail. CO1 K2 44 

7 Solve the recurrence equation T(n)= 3T(n/4)+n using iteration 

method. 

CO1 K3 44 

8 Solve the recurrence equation T(n)= 2T(n/2)+4n using recursion 

tree method. 

CO1 K2 58 

 

MODULE II 

1 Define master’s theorem with example. CO2 K2 62 

2 Solve the recurrence equation T(n)= 2T(n/2)+4n using masters 

method. 

CO2 K4 63 

3 Describe asymptotic notation in detail. CO2 K2 66 

4 Find the O notation of the given equation 5n3 +n2 +6n+2 =f(n). CO2 K5 68 

5 Compare Little Oh and Little Omega Notations with examples. CO2 K5 72 

6 Elucidate AVL tree rotations in detail. CO2 K3 82 

7 Insert 1,2,3,4,5,6,7,8 into an AVL tree. CO2 K5 86 

8 Construct an AVL tree having the following elements 

H,I,J,B,A,E,C. 

CO2 K2 89 

9 Discuss the properties of red black tree. CO2 K2 96 

10 Narrate the insertion of red black tree with example. CO2 K3 101 

11 Explain any 4 cases of red black tree deletion with example. CO2 K2 110 

12 Explain in detail about B Tree with example. CO2 K2 119 
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MODULE III 

1 Discuss in detail about DFS with example. CO3 K3 125 

2 Discuss in detail about BFS with example. CO3 K3 134 

3 Example Minimum Cost Spanning Tree with example. CO3 K2 141 

4 Discuss in detail about Kruskal’s algorithm with example. CO3 K3 141 

5 Discuss in detail about Prim’s algorithm with example. CO3 K5 144 

6 Discuss in detail about Dijkstra’s algorithm. CO3 K3 146 

7 Explain in detail about Bellman Ford algorithm. CO3 K5 147 

8 Explain Topological Sorting CO3 K2 149 

 

MODULE IV 

1 Briefly explain the control abstraction of divide and conquer. CO4 K2 154 

2 Explain the concept of 2- way merge sort. CO4 K1 155 

3 Briefly explain about strassen’s algorithm for matrix 

multiplication. 

CO4 K2 158 

4 Briefly explain the control abstraction of divide and conquer. CO4 K3 161 

5 Explain the working of Bellman ford algorithm. CO4 K5 170 

 

MODULE V 

1 Compare and contrast divide and conquer with dynamic 

programming. 

CO5 K4 173 

2 Explain about Greedy strategy. CO5 K2 174 

3 Write a short note on Fractional Knapsack problem. CO5 K3 175 

4 State MST with examples. CO5 K2 177 

5 Write about Kruskal’s algorithm. CO5 K3 178 

6 Briefly explain about Prim’s algorithm. CO5 K2 179 
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MODULE VI 

1 Describe Backtracking in detail. CO5 K4 181 

2 Explain about N Queen Problem with example. CO5 K2 183 

3 Write a short note on Branch and Bound. CO5 K3 186 

4 State TSP using branch and bound. CO5 K2 187 

5 Differentiate class P and NP Problems in detail. CO5 K3 200 

6 Describe NP-Complete Problems in detail. CO5 K4 202 

7 PT Circuit SAT is NP –Complete. CO5 K4 214 

8 PT Clique is NP –Complete. CO5 K4 223 

9 PT Vertex Cover is NP –Complete. CO5 K4 226 

 

 

APPENDIX 1 

 

CONTENT BEYOND THE SYLLABUS 

S:NO; TOPIC PAGE NO: 

1 Randomized Algorithm 230 
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MODULE III 

 

Graphs – DFS and BFS traversals, complexity, Spanning trees – Minimum Cost 

Spanning Trees, single source shortest path algorithms, Topological sorting, 

strongly connected components.  

 

GRAPHS 

A graph is a pictorial representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by points termed 

as vertices, and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, 

connecting the pairs of vertices. Take a look at the following graph − 

 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

 

GRAPH TRAVERSAL 

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also 

used to decide the order of vertices to be visit in the search process. A graph traversal finds the 

egdes to be used in the search process without creating loops that means using graph traversal we 

visit all vertices of graph without getting into looping path. 

There are two types of graph traversal techniques and they are as follows... 

 DFS (Depth First Search) 

 BFS (Breadth First Search) 



CSE DEPARTMENT, NCERC PAMPADY  
 

Depth First Traversal or DFS for a Graph 

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The 

only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node 

again. To avoid processing a node more than once, we use a boolean visited array. 

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph 

without any loops. We use Stack data structure with maximum size of total number of vertices in 

the graph to implement DFS traversal of a graph. 

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, 

we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited 

vertices, then 2 will be processed again and it will become a non-terminating process. A Depth 

First Traversal of the following graph is 2, 0, 1, 3. 

 

We use the following steps to implement DFS traversal... 

Step 1: Define a Stack of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to the 

Stack. 

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is not 

visited and push it on to the stack. 

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the stack. 

Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex from 

the stack. 

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 

Step 7: When stack becomes Empty, then produce final spanning tree by removing unused edges 

from the graph 

EXAMPLE 1 
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EXAMPLE 2 
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BFS (Breadth First Search) 

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph 

without any loops. We use Queue data structure with maximum size of total number of vertices 

in the graph to implement BFS traversal of a graph. 

We use the following steps to implement BFS traversal... 

Step 1: Define a Queue of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into the 

Queue. 

Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is not 

visited and insert them into the Queue. 

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then delete 

that vertex from the Queue. 

Step 5: Repeat step 3 and 4 until queue becomes empty. 

Step 6: When queue becomes Empty, then produce final spanning tree by removing unused 

edges from the graph 

EXAMPLE 
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EXAMPLE 2 
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COMPLEXITIES OF DFS AND BFS 

BFS: 

Time complexity is O(|V|) where |V| is the number of nodes,you need to traverse all nodes.  

Space complecity is O(|V|) as well - since at worst case you need to hold all vertices in the 

queue. 

DFS: 

Time complexity is again O(|V|), you need to traverse all nodes.  

Space complexity - depends on the implementation, a recursive implementation can have a O(h) 

space complexity [worst case], where h is the maximal depth of your tree.  

Using an iterative solution with a stack is actually the same as BFS, just using a stack instead of 

a queue - so you get both O(|V|) time and space complexity. 

(*) Note that the space complexity and time complexity is a bit different for a tree then for a 

general graphs becase you do not need to maintain a visited for a tree, and |E| = O(|V|), so the |E| 

factor is actually redundant. 
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MINIMUM COST SPANNING TREES 

What is a Spanning Tree? 

Given an undirected and connected graph G=(V,E), a spanning tree of the graph G is a tree that 

spans G(that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree 

belongs to G) 

Minimum Spanning Tree 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be 

many spanning trees. Minimum spanning tree is the spanning tree where the cost is minimum 

among all the spanning trees. There also can be many minimum spanning trees. 

Minimum spanning tree has direct application in the design of networks. It is used in algorithms 

approximating the travelling salesman problem, multi-terminal minimum cut problem and 

minimum-cost weighted perfect matching. Other practical applications are: 

1. Cluster Analysis 

2. Handwriting recognition 

3. Image segmentation 

 

There are two famous algorithms for finding the Minimum Spanning Tree: 

Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing 

spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge 

which has least weight and add it to the growing spanning tree. 

Algorithm Steps: 



CSE DEPARTMENT, NCERC PAMPADY  
 

 Sort the graph edges with respect to their weights. 

 Start adding edges to the MST from the edge with the smallest weight until the edge of 

the largest weight. 

 Only add edges which doesn't form a cycle , edges which connect only disconnected 

components. 

So now the question is how to check if 2 vertices are connected or not ? 

This could be done using DFS which starts from the first vertex, then check if the second vertex 

is visited or not. But DFS will make time complexity large as it has an order 

of O(V+E) where V is the number of vertices, E is the number of edges. So the best solution 

is "Disjoint Sets":  

Disjoint sets are sets whose intersection is the empty set so it means that they don't have any 

element in common. 

Consider following example: 
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In Kruskal’s algorithm, at each iteration, we will select the edge with the lowest weight. So, we 

will start with the lowest weighted edge first i.e., the edges with weight 1. After that we will 

select the second lowest weighted edge i.e., edge with weight 2. Notice these two edges are 

totally disjoint. Now, the next edge will be the third lowest weighted edge i.e., edge with weight 

3, which connects the two disjoint pieces of the graph. Now, we are not allowed to pick the edge 

with weight 4, that will create a cycle and we can’t have any cycles. So we will select the fifth 

lowest weighted edge i.e., edge with weight 5. Now the other two edges will create cycles so we 
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will ignore them. In the end, we end up with a minimum spanning tree with total cost 11 ( = 1 + 

2 + 3 + 5). 

TimeComplexity: 

In Kruskal’s algorithm, most time consuming operation is sorting because the total complexity of 

the Disjoint-Set operations will be O(ElogV), which is the overall Time Complexity of the 

algorithm. 

Prim’s Algorithm 

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s 

Algorithm we grow the spanning tree from a starting position. Unlike an edge in Kruskal's, we 

add vertex to the growing spanning tree in Prim's. 

Algorithm Steps: 

 Maintain two disjoint sets of vertices. One containing vertices that are in the growing 

spanning tree and other that are not in the growing spanning tree. 

 Select the cheapest vertex that is connected to the growing spanning tree and is not in the 

growing spanning tree and add it into the growing spanning tree. This can be done using 

Priority Queues. Insert the vertices, that are connected to growing spanning tree, into the 

Priority Queue. 

 Check for cycles. To do that, mark the nodes which have been already selected and insert 

only those nodes in the Priority Queue that are not marked. 

Consider the example below: 
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In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and mark 

it. In each iteration we will mark a new vertex that is adjacent to the one that we have already 

marked. As a greedy algorithm, Prim’s algorithm will select the cheapest edge and mark the 

vertex. So we will simply choose the edge with weight 1. In the next iteration we have three 

options, edges with weight 2, 3 and 4. So, we will select the edge with weight 2 and mark the 

vertex. Now again we have three options, edges with weight 3, 4 and 5. But we can’t choose 

edge with weight 3 as it is creating a cycle. So we will select the edge with weight 4 and we end 

up with the minimum spanning tree of total cost 7 ( = 1 + 2 +4). 
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SINGLE SOURCE SHORTEST PATH ALGORITHMS 

(a) DIJKSTRA’S ALGORITHM 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted, directed 

graph G = (V, E) for the case in which all edge weights are nonnegative. In this section, 

therefore, we assume that w(u, v) ≥ 0 for each edge (u, v) ∈ E. As we shall see, with a good 

implementation, the running time of Dijkstra’s algorithm is lower than that of the Bellman-Ford 

algorithm. Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights 

from the source s have already been determined. The algorithm repeatedly selects the vertex u ∈ 

V − S with the minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u. In 

the following implementation, we use a min-priority queue Q of vertices, keyed by their d 

values. 

 

Dijkstra’s algorithm relaxes edges as shown in Figure. Line 1 performs the usual initialization of 

d and π values, and line 2 initializes the set S to the empty set. The algorithm maintains the 

invariant that Q = V − S at the start of each iteration of the while loop of lines 4–8. Line 3 

initializes the min-priority queue Q to contain all the vertices in V; since S = ∅ at that time, the 

invariant is true after line 3. Each time through the while loop of lines 4–8, a vertex u is extracted 

from Q = V − S and added to set S, thereby maintaining the invariant. (The first time through this 

loop, u = s.) Vertex u, therefore, has the smallest shortest-path estimate of any vertex in V − S. 

Then, lines 7–8 relax each edge (u, v) leaving u, thus updating the estimate d[v] and the 

predecessor π[v] if the shortest path to v can be improved bygoing through u. Observe that 

vertices are never insertedinto Q after line 3 and that each vertex is extracted from Q and added 

to S exactlyonce, so that the while loop of lines 4–8 iterates exactly |V| times. 
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Figure: The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The shortest-

path estimates are shown within the vertices, and shaded edges indicate predecessor values.Black 

vertices are in the set S, and white vertices are in the min-priority queue Q = V − S.(a) The 

situation just before the first iteration of the while loop of lines 4–8. The shaded vertex hasthe 

minimum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each 

successiveiteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 

5 of the nextiteration. The d and π values shown in part (f) are the final values. 

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex in V − S to add to 

set S, we say that it uses a greedy strategy. 

(b) THE BELLMAN-FORD ALGORITHM 

The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case 

in which edge weights may be negative. Given a weighted, directed graph G = (V, E) with source 

s and weight function w : E → R, the Bellman-Ford algorithm returns a boolean value indicating 

whether or not there is a negative-weight cycle that is reachable from the source. If there is such 

a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm 

produces the shortest paths and their weights. 

The algorithm uses relaxation, progressively decreasing an estimate d[v] on the weight of a 

shortest path from the source s to each vertex v ∈ V until it achieves the actual shortest-path 

weight δ(s, v). The algorithm returns TRUE if and only if the graph contains no negative-weight 

cycles that are reachable from the source. 
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Figure shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After 

initializing the d and π values of all vertices in line 1, the algorithm makes |V| − 1 passes over the 

edges of the graph. Each pass is one iteration of the for loop of lines 2–4 and consists of relaxing 

each edge of the graph once. Figures (b)–(e) show the state of the algorithm after each of the four 

passes over the edges. After making |V|−1 passes, lines 5–8 check for a negative weight cycle 

and return the appropriate boolean value. (We’ll see a little later why this check works.) 

The Bellman-Ford algorithm runs in time O(V E), since the initialization in line 1 takes  

(V) time, each of the |V|−1 passes over the edges in lines 2–4 takes (E) time, and the for loop of 

lines 5–7 takes O(E) time. 

To prove the correctness of the Bellman-Ford algorithm, we start by showing that if there are no 

negative-weight cycles, the algorithm computes correct shortest-path weights for all vertices 

reachable from the source. 
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FIGURE:The execution of the Bellman-Ford algorithm. The source is vertex s. The d values 

are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is 

shaded, then π[v] = u. In this particular example, each pass relaxes the edges in the order (t, x), 

(t, y), (t, z), (x, t ), (y, x), (y, z), (z, x), (z, s), (s, t ), (s, y). (a) The situation just before the first 

pass over the edges. (b)–(e) The situation after each successive pass over the edges. The d and π 

values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this 

example. 

 

TOPOLOGICAL SORTING 

Topological sorting of vertices of a Directed Acyclic Graph is an ordering of the vertices v1,v2,...vn in such a 

way, that if there is an edge directed towards vertex vj from vertex vi, then vi comes before vj. For example 

consider the graph given below: 
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A topological sorting of this graph is: 1 2 3 4 5. There are multiple topological sorting possible for a graph. For 

the graph given above one another topological sorting  

is: 1 2 3 5 4 

 

Let's take a graph and see the algorithm in action. Consider the graph given below: 

 

 

So, we delete 0 from Queue and append it to T. The vertices directly connected 

to 0 are 1 and 2 so we decrease their in_degree[] by 1. So, now in_degree[1]=0 and so 1 is 

pushed in Queue. 

 



CSE DEPARTMENT, NCERC PAMPADY  
 

Next we delete 1 from Queue and append it to T. Doing this we decrease in_degree[2] by 1, and 

now it becomes 0 and 2 is pushed into Queue. 

 

 

So, we continue doing like this, and further iterations looks like as follows: 
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So at last we get our Topological sorting in T i.e. : 0, 1, 2, 3, 4, 5 

Solution using a DFS traversal, unlike the one using BFS, does not need any 

special in_degree[] array. Following is the pseudo code of the DFS solution: 

T = [] 

visited = [] 

topological_sort( cur_vert, N, adj[][] ){ 

    visited[cur_vert] = true 

    for i = 0 to N 

        if adj[cur_vert][i] is true and visited[i] is false 

topological_sort(i) 

T.insert_in_beginning(cur_vert) 

} 

 

STRONGLY CONNECTED COMPONENTS 

A directed graph is called strongly connected if there is a path in each direction between each 

pair of vertices of the graph. In a directed graph G that may not itself be strongly connected, a 

pair of vertices u and v are said to be strongly connected to each other if there is a path in each 

direction between them. 
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MODULE IV 

 

Divide and Conquer: The Control Abstraction, 2 way Merge sort, Strassen’s Matrix 

Multiplication, Analysis  

Dynamic Programming: The control Abstraction- The Optimality Principle- Optimal matrix 

multiplication, Bellman-Ford Algorithm. 

 

CONTROL ABSTRACTION OF DIVIDE AND CONQUER 

A control abstraction is a procedure that reflects the way an actual program based on DAndC 

will look like. A control abstraction shows clearly the flow of control but the primary operations 

are specified by other procedures. The control abstraction can be written either iteratively or 

recursively.  

If we are given a problem with ‘n’ inputs and if it is possible for splitting the ‘n’ inputs 

into ‘k’ subsets where each subset represents a sub problem similar to the main problem then it 

can be achieved by using divide and conquer strategy. 

 If the sub problems are relatively large then divide and conquer strategy is reapplied. The 

sub problem resulting from divide and conquer design are of the same type as the original 

problem. Generally divide and conquer problem is expressed using recursive formulas and 

functions. 

 A general divide and conquer design strategy(control abstraction) is illustrated as given 

below-  

Algorithm DAndC (P)     { 

 if small(P) then return S(P) //termination condition 

 else { 

 Divide P into smaller instances P1, P2,P3…Pkk≥1; or 1≤k≤n 

  Apply DAndC to each of these sub problems. 

 Return Combine (DAndC(P1), DAndC (P2),DAndC (P3)…DAndC (Pk)}}  

The above blocks of code represents a control abstraction for divide and conquer strategy. Small 

(P) is a Boolean valued function that determines whether the input size is small enough that the 

answer can be computed without splitting. If small (P) is true then function ‘S’ is invoked. 

Otherwise the problem ‘P’ is divided into sub problems. These sub problems are solved by 



recursive application of Divide-and-conquer. Finally the solution from k sub problems is 

combined to obtain the solution of the given problem. 

If the size of ‘P’ is ‘n’ and if the size of ‘k’ sub problems is n1,n2,….nk 

Respectively then the computing time of DAndC is described by the recurrence relation. 

  T(n)  = g(n)                                                ,when n is small 

   = T(n1)+ T(n1)+ T(n2)+…….+ T(nk)+ f(n) ,otherwise. 

 T(n) denotes the time for DAndC on any input of size ‘n’. 

 G(n) is the time to compute the answer directly for small inputs. 

 F(n) is the time for dividing ‘P’ and combining the solutions of sub problems. 

************************************************************************ 

2-WAY MERGE SORT 

Merge sort is a divide-and-conquer algorithm based on the idea of breaking down a list into 

several sub-lists until each sublist consists of a single element and merging those sublists in a 

manner that results into a sorted list. 

Idea: 

 Divide the unsorted list into N sublists, each containing 1 element. 

 Take adjacent pairs of two singleton lists and merge them to form a list of 2 

elements. N will now convert into N/2 lists of size 2. 

 Repeat the process till a single sorted list of obtained. 

While comparing two sublists for merging, the first element of both lists is taken into 

consideration. While sorting in ascending order, the element that is of a lesser value becomes a 

new element of the sorted list. This procedure is repeated until both the smaller sublists are 

empty and the new combined sublist comprises all the elements of both the sublists.  

Let’s consider the following image: 



 



 As one may understand from the image above, at each step a list of size M is being 

divided into 2 sublists of size M/2, until no further division can be done. To understand 

better, consider a smaller array A containing the elements (9,7,8). 

 At the first step this list of size 3 is divided into 2 sublists the first consisting of 

elements (9,7) and the second one being (8). Now, the first list consisting of 

elements (9,7) is further divided into 2 sublists consisting of 

elements (9) and (7) respectively. 

 As no further breakdown of this list can be done, as each sublist consists of a maximum 

of 1 element, we now start to merge these lists. The 2 sub-lists formed in the last step are 

then merged together in sorted order using the procedure mentioned above leading to a 

new list (7,9). Backtracking further, we then need to merge the list consisting of 

element (8) too with this list, leading to the new sorted list (7,8,9). 

 

An implementation has been provided below: 

 void merge(int A[ ] , int start, int mid, int end) { 

 //stores the starting position of both parts in temporary variables. 

int p = start ,q = mid+1; 

 

int Arr[end-start+1] , k=0; 

 

for(int i = start ;i <= end ;i++) { 

    if(p > mid)      //checks if first part comes to an end or not . 

       Arr[ k++ ] = A[ q++] ; 

 

   else if ( q > end)   //checks if second part comes to an end or not 

       Arr[ k++ ] = A[ p++ ]; 

 

   else if( A[ p ] < A[ q ])     //checks which part has smaller element. 

      Arr[ k++ ] = A[ p++ ]; 

 

   else 

      Arr[ k++ ] = A[ q++]; 

 } 

  for (int p=0 ; p< k ;p ++) { 

   /* Now the real array has elements in sorted manner including both  

        parts.*/ 

     A[ start++ ] = Arr[ p ] ;                           

  } 

} 

Here, in merge function, we will merge two parts of the arrays where one part has starting and 

ending positions from start to mid respectively and another part has positions from mid+1 to the 

end. 



A beginning is made from the starting parts of both arrays. i.e. p and q. Then the respective 

elements of both the parts are compared and the one with the smaller value will be stored in the 

auxiliary array (Arr[ ]). If at some condition, one part comes to end ,then all the elements of 

another part of array are added in the auxiliary array in the same order they exist. 

Now consider the following 2 branched recursive function: 

   void merge_sort (int A[ ] , int start , int end ) 

   { 

           if( start < end ) { 

           int mid = (start + end ) / 2 ;           // defines the current array in 2 parts . 

           merge_sort (A, start , mid ) ;                 // sort the 1st part of array . 

           merge_sort (A,mid+1 , end ) ;              // sort the 2nd part of array. 

 

         // merge the both parts by comparing elements of both the parts. 

          merge(A,start , mid , end );    

   }                     

} 

 

Time Complexity: 
 

The list of size N is divided into a max of logN parts, and the merging of all sublists into a single 

list takes O(N) time, the worst case run time of this algorithm is O(NLogN) 

 

****************************************************************************** 

STRASSENS ALGORITHM FOR MATRIX MULTIPLICATION 

Consider two matrices A and B with 4x4 dimension each as shown below, 

 

The matrix multiplication of the above two matrices A and B is Matrix C, 

 



where, 

c11=a11∗b11+a12∗b21+a13∗b31+a14∗b41(1)  

c12=a11∗b12+a12∗b22+a13∗b32+a14∗b42(2)  

c21=a21∗b11+a22∗b21+a23∗b31+a24∗b41(3)  

c22=a21∗b12+a22∗b22+a23∗b32+a24∗b42(4) and so on. 

 

Now, let's look at the Divide and Conquer approach to multiply two matrices. 

Take two submatrices from the above two matrices A and B each as (A11 &  A12) and 

(B11 & B21) as shown below, 

 

And the matrix multiplication of the two 2x2 matrices A11 and B11 is, 

 

Also, the matrix multiplication of two 2x2 matrices A12 and B21 is as follows, 

 

So if you observe, I can conclude the following,  



A11∗B11+A12∗B21 =  

Where ‘+’ is Matrix Addition, 

And c11, c12, c21 and c22 are equal to equations 1, 2, 3 and 4 respectively. 

So the idea is to recursively divide n x n matrices into n/2 x n/2 matrices until they are small 

enough to be multiplied in the naive way, more specifically into 8 multiplications and 4 matrix 

additions. 

Recurrence Relation of Divide and Conquer Method: 

For multiplying two matrices of size n x n, we make 8 recursive calls above, each on a 

matrix/subproblem with size n/2 x n/2. Each of these recursive calls multiplies two n/2 x n/2 

matrices, which are then added together. For addition, we add two matrices of size n2 /4 , so each 

addition takes Θ(n2 /4) time.  

We can write this recurrence in the form of the following equations, 

 
From the Case 1 of Master's Theorem, the time complexity of the above approach 

is  . 

The Advantage of using Divide and Conquer over the naive method is that we can parallelize the 

multiplication over different cores and/or cpu’s as the 8 multiplications can be carried out 

independently. 

Strassen’s Algorithm: 

Strassen’s algorithm makes use of the same divide and conquer approach as above, but instead 

uses only 7 recursive calls rather than 8 as shown in the equations below. Here we save one 

recursive call, but have several new additions of n/2 x n/2 matrices. 

https://www.codesdope.com/course/algorithms-masters-theorem/


M1=(A11+A22)(B11+B22) 

M2=(A21+A22)B11 

M3=A11(B12−B22) 

M4=A22(B21−B−11) 

M5=(A11+A12)B22 

M6=(A21−A11)(B11+B12) 

M7=(A12−A22)(B21+B22) 

 

C11=M1+M4−M5+M7 

C12=M3+M5 

C21=M2+M4 

C22=M1−M2+M3+M6 

From the above equations, the recurrence relation of the Strassen’s approach is,  

 

So, from Case 1 of Master's Theorem, the time complexity of the above approach is 

 which beats the divide and conquer approach asymptotically. 

 

*************************************************************************** 

CONTROL ABSTRACTION OF DYNAMIC PROGRAMMING 

Dynamic Programming is also used in optimization problems. Like divide-and-conquer method, 

Dynamic Programming solves problems by combining the solutions of subproblems. Moreover, 

Dynamic Programming algorithm solves each sub-problem just once and then saves its answer in 

a table, thereby avoiding the work of re-computing the answer every time. 

Two main properties of a problem suggest that the given problem can be solved using Dynamic 

Programming. These properties are overlapping sub-problems and optimal substructure. 

Overlapping Sub-Problems: 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines solutions to 

sub-problems. It is mainly used where the solution of one sub-problem is needed repeatedly. The 

https://www.codesdope.com/course/algorithms-masters-theorem/


computed solutions are stored in a table, so that these don’t have to be re-computed. Hence, this 

technique is needed where overlapping sub-problem exists. 

For example, Binary Search does not have overlapping sub-problem. Whereas recursive program 

of Fibonacci numbers have many overlapping sub-problems. 

Optimal Sub-Structure: 

A given problem has Optimal Substructure Property, if the optimal solution of the given problem 

can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure property − 

If a node x lies in the shortest path from a source node u to destination node v, then the shortest 

path from u to v is the combination of the shortest path from u to x, and the shortest path 

from x to v. 

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford are typical 

examples of Dynamic Programming. 

Steps of Dynamic Programming Approach: 

Dynamic Programming algorithm is designed using the following four steps − 

 Characterize the structure of an optimal solution. 

 Recursively define the value of an optimal solution. 

 Compute the value of an optimal solution, typically in a bottom-up fashion. 

 Construct an optimal solution from the computed information. 

***************************************************************************** 

OPTIMALITY PRINCIPLE 

The principle of optimality states that an optimal sequence of decisions has the property that 

whatever the initial state and decision are, the remaining states must constitute an optimal 

decision sequence with regard to the state resulting from the first decision. 

 

 

 



MATRIX CHAIN MULTIPLICATION 

Given following matrices {A1,A2,A3,...An} and we have to perform the matrix multiplication, 

which can be accomplished by a series of matrix multiplications 

A1 xA2 x,A3 x.....x An 

Matrix Multiplication operation is associative in nature rather commutative. By this, we mean 

that we have to follow the above matrix order for multiplication but we are free 

to parenthesize the above multiplication depending upon our need. 

Three Matrices can be multiplied in two ways: 

1. A1,(A2,A3): First multiplying(A2 and A3) then multiplying and resultant withA1. 

2. (A1,A2),A3: First multiplying(A1 and A2) then multiplying and resultant withA3 

To find the best possible way to calculate the product, we could simply parenthesis the 

expression in every possible fashion and count each time how many scalar multiplication are 

required. Matrix Chain Multiplication Problem can be stated as "find the optimal 

parenthesization of a chain of matrices to be multiplied such that the number of scalar 

multiplication is minimized". 

Number of ways for parenthesizing the matrices: 

There are very large numbers of ways of parenthesizing these matrices. If there are n items, there 

are (n-1) ways in which the outer most pair of parenthesis can place. 

(A1) (A2,A3,A4,................An) 

Or (A1,A2)  (A3,A4 .................An) 

Or (A1,A2,A3)  (A4 ...............An) 

........................ 

 

Or(A1,A2,A3.............An-1) (An) 

It can be observed that after splitting the kth matrices, we are left with two parenthesized 

sequence of matrices: one consist 'k' matrices and another consist 'n-k' matrices. 

Development of Dynamic Programming Algorithm 

1. Characterize the structure of an optimal solution. 



2. Define the value of an optimal solution recursively. 

3. Compute the value of an optimal solution in a bottom-up fashion. 

4. Construct the optimal solution from the computed information. 

Step1: Structure of an optimal parenthesization:  

Our first step in the dynamic paradigm is to find the optimal substructure and then use it to 

construct an optimal solution to the problem from an optimal solution to subproblems. 

Let Ai....j where i≤ j denotes the matrix that results from evaluating the product Ai Ai+1....Aj. If i < 

j then any parenthesization of the product Ai Ai+1 ......Aj must split that the product between 

Ak and Ak+1 for some integer k in the range i ≤ k ≤ j. That is for some value of k, we first 

compute the matrices Ai.....k & Ak+1....j and then multiply them together to produce the final 

product Ai....j. The cost of computing Ai....k plus the cost of computing Ak+1....j plus the cost of 

multiplying them together is the cost of parenthesization. 

Step 2: A Recursive Solution: Let m [i, j] be the minimum number of scalar multiplication 

needed to compute the matrixAi....j. 

If i=j the chain consist of just one matrix Ai....i=Ai so no scalar multiplication are necessary to 

compute the product. Thus m [i, j] = 0 for i= 1, 2, 3....n. 

If i<j we assume that to optimally parenthesize the product we split it between Ak and 

Ak+1 where i≤ k ≤j. Then m [i,j] equals the minimum cost for computing the subproducts 

Ai....k and Ak+1....j+ cost of multiplying them together. We know Ai has dimension pi-1 x pi, so 

computing the product Ai....k and Ak+1....jtakes pi-1 pk pj scalar multiplication, we obtain 

m [i,j] = m [i, k] + m [k + 1, j] + pi-1  pk pj 

There are only (j-1) possible values for 'k' namely k = i, i+1.....j-1. Since the optimal 

parenthesization must use one of these values for 'k' we need only check them all to find the best. 

So the minimum cost of parenthesizing the product Ai Ai+1......Aj becomes 

 

To construct an optimal solution, let us define s [i,j] to be the value of 'k' at which we can split 

the product Ai Ai+1 .....Aj To obtain an optimal parenthesization i.e. s [i, j] = k such that 

m [i,j] = m [i, k] + m [k + 1, j] + pi-1  pk pj 



Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 

x 3, 3 x 12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all 

i. 

 

Let us proceed with working away from the diagonal. We compute the optimal solution for the 

product of 2 matrices. 

 

Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-1) 

On the basis of sequence, we make a formula 

 

In Dynamic Programming, initialization of every method done by '0'.So we initialize it by '0'.It 

will sort out diagonally. 

We have to sort out all the combination but the minimum output combination is taken into 

consideration. 

Calculation of Product of 2 matrices: 

1. m (1,2) = m1  x m2 

           = 4 x 10 x  10 x 3 

           = 4 x 10 x 3 = 120 



      

2. m (2, 3) = m2 x m3 

            = 10 x 3  x  3 x 12 

            = 10 x 3 x 12 = 360 

    

3. m (3, 4) = m3 x m4  

            = 3 x 12  x  12 x 20 

            = 3 x 12 x 20 = 720 

    

4. m (4,5) = m4 x m5 

           = 12 x 20  x  20 x 7 

           = 12 x 20 x 7 = 1680 

 

o We initialize the diagonal element with equal i,j value with '0'. 

o After that second diagonal is sorted out and we get all the values corresponded to it  

Now the third diagonal will be solved out in the same way. 

Now product of 3 matrices: 

M [1, 3] = M1 M2 M3 

1. There are two cases by which we can solve this multiplication: ( M1 x M2) + M3, M1+ 

(M2x M3) 

2. After solving both cases we choose the case in which minimum output is there. 

 

M [1, 3] =264 



As Comparing both output 264 is minimum in both cases so we insert 264 in table and ( M1 x 

M2) + M3 this combination is chosen for the output making. 

M [2, 4] = M2 M3 M4 

1. There are two cases by which we can solve this multiplication: (M2x M3)+M4, M2+(M3 x 

M4) 

2. After solving both cases we choose the case in which minimum output is there. 

 

M [2, 4] = 1320 

As Comparing both output 1320 is minimum in both cases so we insert 1320 in table and 

M2+(M3 x M4) this combination is chosen for the output making. 

M [3, 5] = M3  M4  M5 

1. There are two cases by which we can solve this multiplication: ( M3 x M4) + M5, M3+ ( 

M4xM5) 

2. After solving both cases we choose the case in which minimum output is there. 

 

M [3, 5] = 1140 

As Comparing both output 1140 is minimum in both cases so we insert 1140 in table and ( M3 x 

M4) + M5this combination is chosen for the output making. 

 

Now Product of 4 matrices: 

M [1, 4] = M1  M2 M3 M4 

There are three cases by which we can solve this multiplication: 



1. ( M1 x M2 x M3) M4 

2. M1 x(M2 x M3 x M4) 

3. (M1 xM2) x ( M3 x M4) 

After solving these cases we choose the case in which minimum output is there 

 

M [1, 4] =1080 

As comparing the output of different cases then '1080' is minimum output, so we insert 1080 in 

the table and (M1 xM2) x (M3 x M4) combination is taken out in output making, 

M [2, 5] = M2 M3 M4 M5 

There are three cases by which we can solve this multiplication: 

1. (M2 x M3 x M4)x M5 

2. M2 x( M3 x M4 x M5) 

3. (M2 x M3)x ( M4 x M5) 

After solving these cases we choose the case in which minimum output is there 

 

M [2, 5] = 1350 

As comparing the output of different cases then '1350' is minimum output, so we insert 1350 in 

the table and M2 x( M3 x M4 xM5)combination is taken out in output making. 

 



Now Product of 5 matrices: 

M [1, 5] = M1  M2 M3 M4 M5 

There are five cases by which we can solve this multiplication: 

1. (M1 x M2 xM3 x M4 )x M5 

2. M1 x( M2 xM3 x M4 xM5) 

3. (M1 x M2 xM3)x M4 xM5 

4. M1 x M2x(M3 x M4 xM5) 

After solving these cases we choose the case in which minimum output is there 

 

M [1, 5] = 1344 

As comparing the output of different cases then '1344' is minimum output, so we insert 1344 in 

the table and M1 x M2 x(M3 x M4 x M5)combination is taken out in output making. 

Final Output is: 

 

Step 3: Computing Optimal Costs: let us assume that matrix Ai has dimension pi-1x pi for i=1, 

2, 3....n. The input is a sequence (p0,p1,......pn) where length [p] = n+1. The procedure uses an 

auxiliary table m [1....n, 1.....n] for storing m [i, j] costs an auxiliary table s [1.....n, 1.....n] that 

record which index of k achieved the optimal costs in computing m [i, j]. 

The algorithm first computes m [i, j] ← 0 for i=1, 2, 3.....n, the minimum costs for the chain of 

length 1. 



Algorithm of Matrix Chain Multiplication 

Step 1: Constructing an Optimal Solution: 

PRINT-OPTIMAL-PARENS (s, i, j) 

 1. if i=j 

 2. then print "A" 

 3. else print "(" 

 4. PRINT-OPTIMAL-PARENS (s, i, s [i, j]) 

 5. PRINT-OPTIMAL-PARENS (s, s [i, j] + 1, j) 

 6. print ")" 

 

************************************************************************** 

THE BELLMAN-FORD ALGORITHM 

The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case 

in which edge weights may be negative. Given a weighted, directed graph G = (V, E) with source 

s and weight function w : E → R, the Bellman-Ford algorithm returns a boolean value indicating 

whether or not there is a negative-weight cycle that is reachable from the source. If there is such 

a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm 

produces the shortest paths and their weights. 

The algorithm uses relaxation, progressively decreasing an estimate d[v] on the weight of a 

shortest path from the source s to each vertex v ∈ V until it achieves the actual shortest-path 

weight δ(s, v). The algorithm returns TRUE if and only if the graph contains no negative-weight 

cycles that are reachable from the source. 

 

Figure shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After 

initializing the d and π values of all vertices in line 1, the algorithm makes |V| − 1 passes over the 



edges of the graph. Each pass is one iteration of the for loop of lines 2–4 and consists of relaxing 

each edge of the graph once. Figures (b)–(e) show the state of the algorithm after each of the four 

passes over the edges. After making |V|−1 passes, lines 5–8 check for a negative weight cycle 

and return the appropriate boolean value. (We’ll see a little later why this check works.) 

The Bellman-Ford algorithm runs in time O(V E), since the initialization in line 1 takes  

(V) time, each of the |V|−1 passes over the edges in lines 2–4 takes (E) time, and the for loop of 

lines 5–7 takes O(E) time. 

To prove the correctness of the Bellman-Ford algorithm, we start by showing that if there are no 

negative-weight cycles, the algorithm computes correct shortest-path weights for all vertices 

reachable from the source. 

 

FIGURE: The execution of the Bellman-Ford algorithm. The source is vertex s. The d values 

are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is 

shaded, then π[v] = u. In this particular example, each pass relaxes the edges in the order (t, x), 



(t, y), (t, z), (x, t ), (y, x), (y, z), (z, x), (z, s), (s, t ), (s, y). (a) The situation just before the first 

pass over the edges. (b)–(e) The situation after each successive pass over the edges. The d and π 

values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this 

example. 
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MODULE V 

Analysis, Comparison of Divide and Conquer and Dynamic Programming strategies 

Greedy Strategy: - The Control Abstraction- the Fractional Knapsack Problem, Minimal 

Cost Spanning Tree Computation- Prim’s Algorithm – Kruskal’s Algorithm. 

 

COMPARISON OF DIVIDE AND CONQUER AND DYNAMIC 

PROGRAMMING STRATEGIES 

The main difference between divide and conquer and dynamic programming is that the divide 

and conquer combines the solutions of the sub-problems to obtain the solution of the main 

problem while dynamic programming uses the result of the sub-problems to find the 

optimum solution of the main problem. Divide and conquer and dynamic programming are 

two algorithms or approaches to solving problems. Divide and conquer algorithm divides the 

problem into subproblems and combines those solutions to find the solution to the original 

problem. However, dynamic programming does not solve the subproblems independently. It 

stores the answers of subproblems to use them for similar problems. 

 

https://pediaa.com/difference-between-algorithm-and-pseudocode/#Algorithm
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GREEDY STRATEGY 

Among all the algorithmic approaches, the simplest and straightforward approach is the Greedy 

method. In this approach, the decision is taken on the basis of current available information 

without worrying about the effect of the current decision in future. 

A greedy algorithm, as the name suggests, always makes the choice that seems to be the best 

at that moment. This means that it makes a locally-optimal choice in the hope that this choice 

will lead to a globally-optimal solution. Greedy algorithms are quite successful in some 

problems, such as Huffman encoding which is used to compress data, or Dijkstra's algorithm, 

which is used to find the shortest path through a graph. 

The Control Abstraction: 

 

 Selects an input from a[] and removes it. 

 The selected input’s value is assigned to x. 

  Feasible is a Boolean-valued function that determines whether x can be included into the 

solution vector or not.  

 Union combines x with the solution and updates the objective function. 

 

 

 

https://brilliant.org/wiki/huffman-encoding/
https://brilliant.org/wiki/dijkstras-short-path-finder/
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KNAPSACK PROBLEM 

A list of items is given, each item has its own value and weight. Items can be placed in a 

knapsack whose maximum weight limit is W. The problem is to find the weight that is less than 

or equal to W, and value is maximized. 

There are two types of Knapsack problem. 

 0 – 1 Knapsack 

 Fractional Knapsack 

0 – 1 Knapsack 

In 0-1 Knapsack you can either put the item or discard it, there is no concept of putting some part 

of item in the knapsack. 

Example: 

Items = {A, B, C} 

Value of items = {20, 25, 40} 

Weights of items = {25, 20, 30} 

Capacity of the bag = 50 

 

The Maximum capacity of the bag is 50. So, we can choose only items B and C.  

Weight of B=20 and weight of C=30. So, Total weight = 20+30=50. Total Value = 25+40=65. 

Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can select fractions of 

items. 

According to the problem statement, 

 There are n items in the store 

 Weight of ith item wi>0 

 Profit for ith item pi>0and 

 Capacity of the Knapsack is W 

Example: 

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are 

shown in the following table − 
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Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (Pi /Wi ) 7 10 6 5 

 

As the provided items are not sorted based on (Pi /Wi ). After sorting, the items are as shown in 

the following table. 

 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio (Pi /Wi ) 10 7 6 5 

Solution 

 After sorting all the items according to (Pi /Wi ), First all of B is chosen as weight of B is 

less than the capacity of the knapsack.  

 Next, item A is chosen, as the available capacity of the knapsack is greater than the 

weight of A. 

  Now, C is chosen as the next item.  

 However, the whole item cannot be chosen as the remaining capacity of the knapsack is 

less than the weight of C. 

 Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

 Now, the capacity of the Knapsack is equal to the selected items.  

 Hence, no more item can be selected. 

 The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

 And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any different combination of 

items. 
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MINIMAL COST SPANNING TREE COMPUTATION 

What is a Spanning Tree? 

Given an undirected and connected graph G=(V,E), a spanning tree of the graph G is a tree that 

spans G(that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree 

belongs to G) 

Minimum Spanning Tree 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be 

many spanning trees. Minimum spanning tree is the spanning tree where the cost is minimum 

among all the spanning trees. There also can be many minimum spanning trees. 

Minimum spanning tree has direct application in the design of networks. It is used in algorithms 

approximating the travelling salesman problem, multi-terminal minimum cut problem and 

minimum-cost weighted perfect matching. Other practical applications are: 

1. Cluster Analysis 

2. Handwriting recognition 

3. Image segmentation 

 

There are two famous algorithms for finding the Minimum Spanning Tree: 
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Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing 

spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge 

which has least weight and add it to the growing spanning tree. 

Algorithm Steps: 

 Sort the graph edges with respect to their weights. 

 Start adding edges to the MST from the edge with the smallest weight until the edge of 

the largest weight. 

 Only add edges which doesn't form a cycle , edges which connect only disconnected 

components. 

So now the question is how to check if 2 vertices are connected or not ? 

This could be done using DFS which starts from the first vertex, then check if the second vertex 

is visited or not. But DFS will make time complexity large as it has an order 

of O(V+E) where V is the number of vertices, E is the number of edges. So the best solution 

is "Disjoint Sets":  

Disjoint sets are sets whose intersection is the empty set so it means that they don't have any 

element in common. 

Consider following example: 

In Kruskal’s algorithm, at each iteration, we will select the edge with the lowest weight. So, we 

will start with the lowest weighted edge first i.e., the edges with weight 1. After that we will 

select the second lowest weighted edge i.e., edge with weight 2. Notice these two edges are 

totally disjoint. Now, the next edge will be the third lowest weighted edge i.e., edge with weight 

3, which connects the two disjoint pieces of the graph. 

Now, we are not allowed to pick the edge with weight 4, that will create a cycle and we can’t 

have any cycles. So we will select the fifth lowest weighted edge i.e., edge with weight 5. Now 

the other two edges will create cycles so we will ignore them. In the end, we end up with a 

minimum spanning tree with total cost 11 ( = 1 + 2 + 3 + 5). 

TimeComplexity: 

In Kruskal’s algorithm, most time consuming operation is sorting because the total complexity of 

the Disjoint-Set operations will be O(E log V), which is the overall Time Complexity of the 

algorithm. 
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Prim’s Algorithm 

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s 

Algorithm we grow the spanning tree from a starting position. Unlike an edge in Kruskal's, we 

add vertex to the growing spanning tree in Prim's. 

Algorithm Steps: 

 Maintain two disjoint sets of vertices. One containing vertices that are in the growing 

spanning tree and other that are not in the growing spanning tree. 

 Select the cheapest vertex that is connected to the growing spanning tree and is not in the 

growing spanning tree and add it into the growing spanning tree. This can be done using 

Priority Queues. Insert the vertices, that are connected to growing spanning tree, into the 

Priority Queue. 
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 Check for cycles. To do that, mark the nodes which have been already selected and insert 

only those nodes in the Priority Queue that are not marked. 

Consider the example below: 

 

In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and mark 

it. In each iteration, we will mark a new vertex that is adjacent to the one that we have already 

marked. As a greedy algorithm, Prim’s algorithm will select the cheapest edge and mark the 

vertex. So we will simply choose the edge with weight 1. In the next iteration we have three 

options, edges with weight 2, 3 and 4. So, we will select the edge with weight 2 and mark the 

vertex. Now again we have three options, edges with weight 3, 4 and 5. But we can’t choose 

edge with weight 3 as it is creating a cycle. So we will select the edge with weight 4 and we end 

up with the minimum spanning tree of total cost 7 ( = 1 + 2 +4). 
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BACKTRACKING 

The Backtracking is an algorithmic-method to solve a problem with an additional way. It uses a 

recursive approach to explain the problems. We can say that the backtracking is needed to find 

all possible combination to solve an optimization problem. 

Backtracking is a systematic way of trying out different sequences of decisions until we find 

one that "works." 

In the following Figure: 

 Each non-leaf node in a tree is a parent of one or more other nodes (its children) 

 Each node in the tree, other than the root, has exactly one parent 

 
 

Generally, however, we draw our trees downward, with the root at the top. 



 
 

A tree is composed of nodes. 

 
 

Backtracking can understand of as searching a tree for a particular "goal" leaf node. 

Backtracking is undoubtedly quite simple - we "explore" each node, as follows: 

To "explore" node N: 

 1. If N is a goal node, return "success" 

 2. If N is a leaf node, return "failure" 

 3. For each child C of N, 

     Explore C 

     If C was successful, return "success" 

 4. Return "failure" 

 



The Control Abstraction: 

 

 

N- QUEEN PROBLEM 

The prototypical backtracking problem is the classical n Queens Problem, first proposed by 

German chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the 

standard 8 × 8 board and by François-Joseph Eustache Lionnet in 1869 for the more general n × 

n board.  

The problem is to place n queens on an n × n chessboard, so that no two queens can attack 

each other. For readers not familiar with the rules of chess, this means that no two queens are 

in the same row, column, or diagonal. Obviously, in any solution to the n-Queens problem, 

there is exactly one queen in each row. So we will represent our possible solutions using an array 

Q[1 .. n], where Q[i] indicates which square in row i contains a queen, or 0 if no queen has yet 

been placed in row i.  

To find a solution, we put queens on the board row by row, starting at the top. A partial solution 

is an array Q[1 .. n] whose first r − 1 entries are positive and whose last n − r + 1 entries are all 

zeros, for some integer r. The following recursive algorithm, essentially due to Gauss (who 

called it “methodical groping”), recursively enumerates all complete n-queens solutions that are 

consistent with a given partial solution.  

The input parameter r is the first empty row. Thus, to compute all n-queens solutions with no 

restrictions, we would call RECURSIVENQUEENS(Q[1 .. n], 1). 

 



 

 

 

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated 

using a recursion tree. The root of the recursion tree corresponds to the original invocation of the 

algorithm; edges in the tree correspond to recursive calls. A path from the root down to any node 

shows the history of a partial solution to the n-Queens problem, as queens are added to 

successive rows. The leaves correspond to partial solutions that cannot be extended, either 

because there is already a queen on every row, or because every position in the next empty row 

is in the same row, column, or diagonal as an existing queen. The backtracking algorithm simply 

performs a depth-first traversal of this tree. 

 



 

 

0-1 KNAPSACK USING BACKTRACKING 

1. A Greedy approach is to pick the items in decreasing order of value per unit weight. 

The Greedy approach works only for fractional knapsack problem and may not produce 

correct result for 0/1 knapsack. 

2. We can use Dynamic Programming (DP) for 0/1 Knapsack problem. In DP, we use a 2D 

table of size n x W. The DP Solution doesn’t work if item weights are not integers. 

3. Since DP solution doesn’t alway work, a solution is to use Brute Force. With n items, 

there are 2n solutions to be generated, check each to see if they satisfy the constraint, save 

maximum solution that satisfies constraint. This solution can be expressed as tree. 

 

We can use Backtracking to optimize the Brute Force solution. In the tree representation, we 

can do DFS of tree. If we reach a point where a solution no longer is feasible, there is no need 

to continue exploring. In the given example, backtracking would be much more effective if 

we had even more items or a smaller knapsack capacity. 

https://www.geeksforgeeks.org/fractional-knapsack-problem/
https://www.geeksforgeeks.org/fractional-knapsack-problem/
https://www.geeksforgeeks.org/dynamic-programming-set-10-0-1-knapsack-problem/
https://www.geeksforgeeks.org/dynamic-programming-set-10-0-1-knapsack-problem/


 

 

 

BRANCH AND BOUND 

The branch and bound algorithm is similar to backtracking but is used for 

optimization problems. It performs a graph transversal on the space-state tree, but 

general searches BFS instead of DFS. 

  

During the search bounds for the objective function on the partial solution are 

determined. At each level the best bound is explored first, the technique is called best 

bound first.  If a complete solution is found then that value of the objective function 

can be used to prune partial solutions that exceed the bounds. 

  

The difficult of designing branch and bound algorithm is finding good bounding 

function. The bounding the function should be inexpensive to calculate but should be 

effective at selecting the most promising partial solution. 

 



TRAVELLING SALESMAN PROBLEM USING BRANCH AND 

BOUND 

Solve Travelling Salesman Problem using Branch and Bound Algorithm in the following graph- 

 

Solution- 

 Step-01: 

 Write the initial cost matrix and reduce it- 

 

 Rules 

 To reduce a matrix, perform the row reduction and column reduction of the matrix separately. 

 A row or a column is said to be reduced if it contains at least one entry ‘0’ in it. 

  

Row Reduction- 



 Consider the rows of above matrix one by one. 

 If the row already contains an entry ‘0’, then- 

 There is no need to reduce that row. 

 If the row does not contains an entry ‘0’, then- 

 Reduce that particular row. 

 Select the least value element from that row. 

 Subtract that element from each element of that row. 

 This will create an entry ‘0’ in that row, thus reducing that row. 

 Following this, we have- 

 Reduce the elements of row-1 by 4. 

 Reduce the elements of row-2 by 5. 

 Reduce the elements of row-3 by 6. 

 Reduce the elements of row-4 by 2. 

 Performing this, we obtain the following row-reduced matrix- 

 

 Column Reduction- 

 Consider the columns of above row-reduced matrix one by one. 

 If the column already contains an entry ‘0’, then- 

 There is no need to reduce that column. 

  



If the column does not contains an entry ‘0’, then- 

 Reduce that particular column. 

 Select the least value element from that column. 

 Subtract that element from each element of that column. 

 This will create an entry ‘0’ in that column, thus reducing that column. 

  

Following this, we have- 

 There is no need to reduce column-1. 

 There is no need to reduce column-2. 

 Reduce the elements of column-3 by 1. 

 There is no need to reduce column-4. 

  

Performing this, we obtain the following column-reduced matrix- 

  

 

Finally, the initial distance matrix is completely reduced. 

Now, we calculate the cost of node-1 by adding all the reduction elements. 

  

Cost(1)= Sum of all reduction elements 

= 4 + 5 + 6 + 2 + 1= 18 



 Step-02: 

 We consider all other vertices one by one. 

 We select the best vertex where we can land upon to minimize the tour cost. 

 Choosing To Go To Vertex-B: Node-2 (Path A → B) 

 From the reduced matrix of step-01, M[A,B] = 0 

 Set row-A and column-B to ∞ 

 Set M[B,A] = ∞ 

 Now, resulting cost matrix is- 

 

 Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-02. 

 Row Reduction- 

 We can not reduce row-1 as all its elements are ∞. 

 Reduce all the elements of row-2 by 13. 

 There is no need to reduce row-3. 

 There is no need to reduce row-4. 

 Performing this, we obtain the following row-reduced matrix- 

  



 

 Column Reduction- 

 Reduce the elements of column-1 by 5. 

 We can not reduce column-2 as all its elements are ∞. 

 There is no need to reduce column-3. 

 There is no need to reduce column-4. 

 Performing this, we obtain the following column-reduced matrix- 

 

Finally, the matrix is completely reduced. 

Now, we calculate the cost of node-2. 

Cost(2)= Cost(1) + Sum of reduction elements + M[A,B] 

= 18 + (13 + 5) + 0= 36 

Choosing To Go To Vertex-C: Node-3 (Path A → C) 

 From the reduced matrix of step-01, M[A,C] = 7 

 Set row-A and column-C to ∞ 

 Set M[C,A] = ∞ 

 Now, resulting cost matrix is- 



 

 Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-03. 

 Row Reduction- 

 We can not reduce row-1 as all its elements are ∞. 

 There is no need to reduce row-2. 

 There is no need to reduce row-3. 

 There is no need to reduce row-4. 

 Thus, the matrix is already row-reduced. 

 Column Reduction- 

 There is no need to reduce column-1. 

 There is no need to reduce column-2. 

 We can not reduce column-3 as all its elements are ∞. 

 There is no need to reduce column-4. 

 Thus, the matrix is already column reduced. 

Finally, the matrix is completely reduced. 

Now, we calculate the cost of node-3. 

Cost(3)= Cost(1) + Sum of reduction elements + M[A,C] 

= 18 + 0 + 7= 25 



 Choosing To Go To Vertex-D: Node-4 (Path A → D) 

 From the reduced matrix of step-01, M[A,D] = 3 

 Set row-A and column-D to ∞ 

 Set M[D,A] = ∞ 

 Now, resulting cost matrix is- 

 

 Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-04. 

 Row Reduction- 

 We can not reduce row-1 as all its elements are ∞. 

 There is no need to reduce row-2. 

 Reduce all the elements of row-3 by 5. 

 There is no need to reduce row-4. 

 Performing this, we obtain the following row-reduced matrix- 

 



 Column Reduction- 

 There is no need to reduce column-1. 

 There is no need to reduce column-2. 

 There is no need to reduce column-3. 

 We can not reduce column-4 as all its elements are ∞. 

 Thus, the matrix is already column-reduced. 

Finally, the matrix is completely reduced. 

Now, we calculate the cost of node-4. 

 Cost(4)= Cost(1) + Sum of reduction elements + M[A,D] 

= 18 + 5 + 3= 26 

 Thus, we have- 

 Cost(2) = 36 (for Path A → B) 

 Cost(3) = 25 (for Path A → C) 

 Cost(4) = 26 (for Path A → D) 

 We choose the node with the lowest cost. 

Since cost for node-3 is lowest, so we prefer to visit node-3. 

Thus, we choose node-3 i.e. path A → C. 

 Step-03: 

 We explore the vertices B and D from node-3. 

We now start from the cost matrix at node-3 which is- 

 



 Cost(3) = 25 

 Choosing To Go To Vertex-B: Node-5 (Path A → C → B) 

 From the reduced matrix of step-02, M[C,B] = ∞ 

 Set row-C and column-B to ∞ 

 Set M[B,A] = ∞ 

 Now, resulting cost matrix is- 

 

 Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-5. 

 Row Reduction- 

 We can not reduce row-1 as all its elements are ∞. 

 Reduce all the elements of row-2 by 13. 

 We can not reduce row-3 as all its elements are ∞. 

 Reduce all the elements of row-4 by 8. 

 Performing this, we obtain the following row-reduced matrix- 

 



 Column Reduction- 

 There is no need to reduce column-1. 

 We can not reduce column-2 as all its elements are ∞. 

 We can not reduce column-3 as all its elements are ∞. 

 There is no need to reduce column-4. 

 Thus, the matrix is already column reduced. 

Finally, the matrix is completely reduced. 

Now, we calculate the cost of node-5. 

 Cost(5)= cost(3) + Sum of reduction elements + M[C,B] 

= 25 + (13 + 8) + ∞= ∞ 

 Choosing To Go To Vertex-D: Node-6 (Path A → C → D) 

 From the reduced matrix of step-02, M[C,D] = ∞ 

 Set row-C and column-D to ∞ 

 Set M[D,A] = ∞ 

Now, resulting cost matrix is- 

 

  

Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-6. 

 Row Reduction- 



 We can not reduce row-1 as all its elements are ∞. 

 There is no need to reduce row-2. 

 We can not reduce row-3 as all its elements are ∞. 

 We can not reduce row-4 as all its elements are ∞. 

 Thus, the matrix is already row reduced. 

 Column Reduction- 

 There is no need to reduce column-1. 

 We can not reduce column-2 as all its elements are ∞. 

 We can not reduce column-3 as all its elements are ∞. 

 We can not reduce column-4 as all its elements are ∞. 

 Thus, the matrix is already column reduced. 

Finally, the matrix is completely reduced. 

Now, we calculate the cost of node-6. 

 Cost(6)= cost(3) + Sum of reduction elements + M[C,D] 

= 25 + 0 + 0= 25 

Thus, we have- 

 Cost(5) = ∞ (for Path A → C → B) 

 Cost(6) = 25 (for Path A → C → D) 

 We choose the node with the lowest cost. 

Since cost for node-6 is lowest, so we prefer to visit node-6. 

Thus, we choose node-6 i.e. path C → D. 

 Step-04: 

 We explore vertex B from node-6. 

We start with the cost matrix at node-6 which is- 



 

 Cost(6) = 25 

 Choosing To Go To Vertex-B: Node-7 (Path A → C → D → B) 

 From the reduced matrix of step-03, M[D,B] = 0 

 Set row-D and column-B to ∞ 

 Set M[B,A] = ∞ 

 Now, resulting cost matrix is- 

 

 Now, 

 We reduce this matrix. 

 Then, we find out the cost of node-7. 

 Row Reduction- 

 We can not reduce row-1 as all its elements are ∞. 

 We can not reduce row-2 as all its elements are ∞. 

 We can not reduce row-3 as all its elements are ∞. 

 We can not reduce row-4 as all its elements are ∞. 

 Column Reduction- 

 We can not reduce column-1 as all its elements are ∞. 



 We can not reduce column-2 as all its elements are ∞. 

 We can not reduce column-3 as all its elements are ∞. 

 We can not reduce column-4 as all its elements are ∞. 

 Thus, the matrix is already column reduced. 

Finally, the matrix is completely reduced. 

All the entries have become ∞. 

Now, we calculate the cost of node-7. 

 Cost(7)= cost(6) + Sum of reduction elements + M[D,B] 

=25+0+0=25. 

Thus, 

 Optimal Path is : A->C->D->B->A 

Cost of Optimal Path = 25 units. 

 

 

 

 





















































































CONTENT BEYOND SYLLABUS 

 

RANDOMIZED ALGORITHMS 

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic. 

The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in 

the hope of achieving good performance in the "average case" over all possible choices of 

random determined by the random bits; thus either the running time, or the output (or both) are 

random variables. 

One has to distinguish between algorithms that use the random input so that they always 

terminate with the correct answer, but where the expected running time is finite (Las Vegas 

algorithms, for example Quicksort), and algorithms which have a chance of producing an 

incorrect result (Monte Carlo algorithms, for example the Monte Carlo algorithm for 

the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. 

In some cases, probabilistic algorithms are the only practical means of solving a problem. 

 

Randomized algorithms are classified in two categories. 

 

Las Vegas: 

 

These algorithms always produce correct or optimum result. Time complexity of these 

algorithms is based on a random value and time complexity is evaluated as expected value. For 

example, Randomized QuickSort always sorts an input array and expected worst case time 

complexity of QuickSort is O(nLogn). 

 

Monte Carlo:  

 

Produce correct or optimum result with some probability. These algorithms have deterministic 

running time and it is generally easier to find out worst case time complexity. For example this 

implementation of Karger’s Algorithm produces minimum cut with probability greater than or 

equal to 1/n2 (n is number of vertices) and has worst case time complexity as O(E). Another 

example is Fermet Method for Primality Testing. 

 

A Las Vegas algorithm for this task is to keep picking a random element until we find a 1. A 

Monte Carlo algorithm for the same is to keep picking a random element until we either find 1 

or we have tried maximum allowed times say k. 

The Las Vegas algorithm always finds an index of 1, but time complexity is determined as 

expect value. The expected number of trials before success is 2, therefore expected time 

complexity is O(1). 

The Monte Carlo Algorithm finds a 1 with probability [1 – (1/2)k]. Time complexity of Monte 

Carlo is O(k) which is deterministic 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Monte_Carlo_algorithm
https://en.wikipedia.org/wiki/Minimum_feedback_arc_set
https://www.geeksforgeeks.org/randomized-algorithms-set-1-introduction-and-analysis/
https://www.geeksforgeeks.org/randomized-algorithms-set-1-introduction-and-analysis/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/primality-test-set-2-fermet-method/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/


Applications and Scope: 

 

 Consider a tool that basically does sorting. Let the tool be used by many users and there are 

few users who always use tool for already sorted array. If the tool uses simple (not 

randomized) QuickSort, then those few users are always going to face worst case situation. 

On the other hand if the tool uses Randomized QuickSort, then there is no user that always 

gets worst case. Everybody gets expected O(n Log n) time. 

 Randomized algorithms have huge applications in Cryptography. 

 Load Balancing. 

 Number-Theoretic Applications: Primality Testing 

 Data Structures: Hashing, Sorting, Searching, Order Statistics and Computational 

Geometry. 

 Algebraic identities: Polynomial and matrix identity verification. Interactive proof systems. 

 Mathematical programming: Faster algorithms for linear programming, Rounding linear 

program solutions to integer program solutions 

 Graph algorithms: Minimum spanning trees, shortest paths, minimum cuts. 

 Counting and enumeration: Matrix permanent Counting combinatorial structures. 

 Parallel and distributed computing: Deadlock avoidance distributed consensus. 

 Probabilistic existence proofs: Show that a combinatorial object arises with non-zero 

probability among objects drawn from a suitable probability space. 

 Derandomization: First devise a randomized algorithm then argue that it can be 

derandomized to yield a deterministic algorithm. 

 

https://www.geeksforgeeks.org/load-balancing-on-servers-random-algorithm/
https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_primality_test
https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-2-expected-linear-time/
https://en.wikipedia.org/wiki/Randomized_algorithm#Verifying_matrix_multiplication
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
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